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Abstract

We discuss a group of parallel algorithms, and their implementa-
tion, for solving a special class of large sparse nonlinear equations. The
type of sparsity occurring in these problems, which arise in VLSI de-
sign, structural engineering and many other areas, is called a block bor-
dered structure. We describe an explicit method and several implicit
methods for solving block bordered nonlinear problems, and make
a mathematical analysis and computational comparisons of the two
types of methods. Several variations and globally convergent modifi-
cations of the implicit method are also presented. We describe parallel
algorithms for solving block bordered nonlinear equations, and present
experimental results on the Intel hypercube that show the effective-
ness of the parallel implicit algorithms. These experiments include a
fairly large circuit simulation that leads to a multi-level block bordered
system of nonlinear equations.
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1 Introduction

1.1 Definition of block bordered nonlinear problems

In this paper we present a group of parallel algorithms, and their implementa-
tions, for solving a special class of large sparse nonlinear equations, instances
of which occur in VLSI design, structural engineering and many other areas.
The class of sparsity occurring in these problems is called a block bordered
structure. In such a problem the general system of n nonlinear equations in n
unknowns may be grouped into q+ 1 subvectors, X1 , ..., Xq,+ and fl, .. , fq+l

such that the nonlinear system of equations has the form

fi(xi, xq+) 0; = ; 1,...,q (1.1)
fq+l(-xl, ..., q+l) --0

where

xiE R n

fi E Rn', i = 1, ...,q+l,

q+1
n 7 i  n 1.

i=1

The block bordered Jacobian matrix of (1.1) is

A, B 1

A2  B 2

(1.2)

Aq Bq

C 1 C 2  Cq P

where

Ai = E Rn' xn, i = 1, ...,
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B = aXq+1 E RflXnq+1 = 1, q..,

C L nq+1Xn
Ci = O.q+a 1E R" x , i = ,..,q,

axi

~A.±2 E ~fq+1 xnq+1p = O~fq+l E R" + x + .

9xq+l

Newton's method is the fundamental approach for solving a general non-
linear system of equations. Several parallel algorithms for solving general
systems of nonlinear equations that are based upon Newton's method have
been developed and implemented on various parallel computers. These paral-
lel algorithms consist mainly of solving the linear Jacobian system in pare Uel.
Many parallel algorithms have been developed for solving linear systems, such
as parallel factorizations, parallel SOR methods, parallel red-black methods,
parallel multicolor and others (see e.g. Ortega and Voigt (1985], O'Leary and
White [19851, White [1986], Fontecilla [1987], Coleman and Li [1987]).

In the case of large sparse nonlinear problems, one cannot expect a single
parallel algorithm to handle all the instances of the system of nonlinear equa-
tions problem efficiently, but rather the algorithm must take into account the
sparsity structure and other special characteristics of the problem. Parallel
algorithms taking advantage of this special structure may be much more ef-
ficient than algorithms ignoring the structure. This paper is an instance of
developing special algorithms for a special, important structure.

1.2 Background on block bordered problems

Block bordered problems of the form (1.1) arise in many areas of science and
engineering, and a few algorithms have been developed to solve linear block
bordered systems of equations efficiently. In applications such as structural
engineering, large spatial models may be divided into q regions such that each
region only interacts directly with neighboring regions. The variables, Xi, for
each region, are chosen so that the model can determine their values, given
the values of the linking variables (the xq+i) at the boundaries of the regions.
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The linking variables are tied together by a q + 1st set of equations repre-
senting the interactions between the regions. Thus the equilibrium equations
for such a model will be of the form (1.1). In addition, the Jacobian matrix
is symmetric. These problems, and parallel algorithms for solving the linear
block bordered systems that arise from them, are discussed in Farhat and
Wilson [1986], Nour-Omid and Park [1986].

Mu and Rice [1989] study parallel Gaussian elimination for the block bor-
dered matrices arising from the discretization of partial differential equations
(PDEs). Christara and Houstis [1988][1989] implement a domain decompo-
sition spline collocation method, and a preconditioned conjugate gradient
(PCG) method, for this linear block bordered system on both NCUBE/7
and Sequent multiprocessors.

All the work described above concerns parallel methods for solving lin-
ear block bordered equations. Our research is to develop, implement, and
analyze parallel methods for solving nonlinear block bordered problems. To
our knowledge, no one has done similar work. Chan[1985] considers methods
for a class of nonlinear problems that includes (1.1), but his focus is on ap-
proximate solutions of the linearizations of these equations, and he does not
specifically consider block bordered structure.

Block bordered equations also arise in VLSI circuit design, where parts
of the circuits may be divided into regions. The concept of macromode!ing
the circuit is to decompose the circuit into subcircuits and to analyze the
subcircuits separately (see Rabbat et al [1979]., [1980]). Macromodeling of
the circuit results in a system of nonlinear equations of form (1.1). Ai and
Bi (i = 1, ..., q) in the Jacobian matrix are usually used to represent
internal and input-output variables in each of the q independent subcircuits.
The variables represent voltages and currents. The bottom block fq+l rep-
resents the voltages or currents between subcircuits. Since each voltage or
current is used only in one block of equations f; plus possibly the bottom
block fq+,, the nonzero columns of the B,'s (and A,) are disjoint, meaning
that the matrices Bi, ... Bq in (1.2) also follow a block diagonal pattern. In
addition, since fq+l describes the point-to-point connections of voltage and
current, it is a linear function. The size of the function fq+l depends on the
number of connections among the subcircuits.
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We have studied parallel methods for solving block bordered nonlinear
equations extensively from both theoretical and practical viewpoints. Sec-
tion 2 presents an explicit method and several implicit methods for solving
block bordered nonlinear equations, and gives some mathematical analysis
and computational comparison of these two types of methods. Section 3
briefly discusses techniques used to make these methods globally convergent.
In Section 4, we give a group of parallel algorithms for solving block bor-
dered nonlinear systems of form (1.1) which may be implemented on both
shared and distributed memory multiprocessors. The implementations and
experimental results of these algorithms on the Intel hypercube, a distributed
memory multiprocessor, are presented in Section 5. Finally, our conclusions
and some future research directions are summarized in Section 6.

2 Explicit and Implicit Methods

2.1 Introduction

There are two basic ways in which Newton's method can be applied to the
nonlinear block bordered system of equations (1.1). The explicit approach is
to simply apply Newton's method to (1.1). This involves iteratively solving
the linear system

J(Xk)AX k = -F(Xk) i = 1, ..., q (2.1)

for AXk, where J(Xk) is the Jacobian of F, which has the block bordered
structure (1.2).

The pure implicit approach is to use each of the q systems of nonlinear
equations

fi(xi, xq+i) = 0, i = 1, ... q (2.2)

to solve for x1, given a fixed value of Xq+l. This means that each of the x,
is implicitly given by a function of xq+I. The whole problem (2.2) is thcr
equivalent to solving

fq+l(x(xq+l) ... Xq+) = 0. (2.3)
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The Jacobian of this system is given by

j_ _+ -
8 f+.Of_, Of= i = I, ..., q (2.4)

axq+1 = aX, axi 19xq,

or q

P - ,CAi-'Bi i = 1, ... , q (2.5)
i=1

and we may solve (2.3) by Newton's method. We will be considering practical
variants of the implicit method that do not calculate xi(xq+i) exactly.

In this section we describe the explicit and implicit methods and their
relations to each other, and give some simple experimental results using them
on a sequential computer. These results give a preliminary indication of why
the implicit method will be advantageous on parallel computers.

2.2 Algorithms and analysis for the explicit and im-
plicit methods

Newton's method applied to (1.1) in the explicit method consists of solving
the following linear equations at iteration k (k = 0, 1, ...): from fi(x) = 0,

= 1, ...,q,
AjAx + B, Ax' + fi(zr, xq~1 ) = 0 (2.6)

and from fq+,(x k, ..., x ,x +,) = 0

q

_CiAxI + PAXk+I + fq+,(k, ...,, Xq, X,+,) = 0. (2.7)
i=1

(For simplicity we are omitting superscripts k on A1 , Bi, Ci and P, but note
that at least the Ai's and Bj's can change at each iteration.) Solving for A?
in (2.6) and substituting into (2.7), we obtain

q
jAX fq+(X, ... , k, k+) + ZCAj 1fi(?, X k (2.8)q+ -" I(i X Xq+ 1EG j

i=1

where j is given by (2.5). (We assume for now that J and each Ai is non-
singular.) So

k+1 = kq+1 xq+l + q+(2.9)
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can be determined from (2.8), and

k+J = ? + X i , (2.10)

can be determined from (2.6).

In the pure implicit method, Newton's method is applied to (2.3), and
gives

J 34+ + fq+l(xl(x,~ l), .. , q(k ), x ) = 0 (2.11)(q+,) .., q,+1), q4
where x,(xq+l) (i = 1, ..., q) is implicitly determined by solving the
nonlinear system

fi(xi, ,q+l) = 0 (2.12)

for xi. To turn this into a practical computational procedure, we use a second
(or inner) iterative Newton process on (2.12) to calculate an x,(xk+,) which
solves (2.12) approximately. For each i = 1, ..., q, this yields the inner
iterations

,+ f,(x "'-  , = 0 i -- 1, ..., q, j = 1, 2, .. i, (2.13)

Here xik' = xi, Iin is the number of inner iterations, and Ai = Ai if it is
only evaluated once at the beginning of each outer iteration, else it may be
evaluated up to Ii,. times. At the end of each inner iteration, we set

k J = xk j - i + Axk' - ' , i = 1, ..., q. (2.14)

When we exit the inner iterations, we set

xiXq+1 ) = . (2.15)

Then, xq+, is determined from (2.11), and
k+ k + k (2.16)

q+1 -  q+1 -/kq+l"

The following theorems show that the explicit method and the implicit
methods just described are very closely related.

Theorem 1 If fq+i is linear and only one inner Newton iteration is applied
to solve for x + 1 (i = 1, ... , q) in the implicit method, i.e. Ii,, = 1, then
for a fixed k, the steps Ax,+, are identical in both methods.



Proof In this casexi+l ? - A l f(x ,  k )k+, k )k- - q,+ ), n 1 ( .. , q , X q+ i)
fql(T ,kq+l) -iA1f( )

--. 1 CA qf(4,+). Substituting this into
(2.11) gives

k k q

A + -= -fq+l(x, ... , q, Xq+) + ECA,'f,(z , 4+) (2.17)
i=0

which is identical to the explicit formula (2.8). 0

In the implicit method described above, the steps Ax for i < q do not
involve any information about fq+i or AXq+l, and are not the same as in the
explicit method. For this reason, the method is not one-step quadratically
convergent. If the value of 4C+1(i < q) calculated by the implicit method is
corrected after each iteration to account for the change in xq+,, however, the
implicit method can be made closer to the explicit method and quadratically
convergent. The problem may be defined to find a correction term 6 such
that fi(? +i + 6, Xk+1)nz

f +q+6 ) "  0 (2.18)

or
f(Xk+ 6, Xq+ 1 + Axq+l) ; 0. (2.19)

Making a linear approximation to f, in (2.19) yields the condition

f1 (zk+1 )q+) + Aj6 + B1A4+, = 0. (2.20)

The correction term 6 obtained from (2.20) would then be

6(= -AT'[f(z 9+ j, .l.+ BA A +]. (2.21)

However, after I,. inner iterations of solving for z 1 , f,(4f+l, 4+ ) 0.
Thus we make a further approximation giving the correction term

6i = -AT'B kA+1 . (2.22)

We name the implicit method with this correction term added to each xz+ '
after Ax k 1 is calculated the corrected implicit method. The cost of the

correction term (2.22) is small since the matrices A7Bj (i = 1, ..., q) have
been calculated already and in a parallel implementation, the matrix-vector
products can be parallelized fully.
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We can now see that when fq+l is linear the explicit method is a special
case f the corrected implicit method.

Theorem 2 If fq+l is linear and only one Newton iteration is applied to
solve for xz' j (i = 1, ..., q) in the implicit method, i.e. I;, = 1, and
the system is corrected by adding -A- 1 BiAxq+l to X'+'(i < q) after each
iteration, then the explicit method and implicit method are identical.

Proof From Theorem 1, Axk+1 is identical for the two methods. Combining
(2.14) with j = 1 and (2.22) gives:

? = ? - AT'[fi(4, Xk - Xk 1 ] (2.23)

which is identical to (2.6) in the explicit method. 0

Corollary If fq+l is linear, the corrected implicit method with Iir = 1
inner iterations per outer iteration is locally quadratically convergent to the
solution.

Quadratic convergence can also be shown for 1j,, > 1 and when fq+l is
nonlinear. The proof is given in Zhang[1989].

2.3 Some experiments on a sequential processor

The previous subsection shows that a variant of the implicit method is equiv-
alent to the explicit method, but doesn't indicate why the implicit method
might be preferred. The main reason turns out to be that, by using more than
one inner iteration per outer iteration in the implicit method, the number
of outer iterations can be reduced substantially, which is advantageous espe-
cially for parallel computation. In this subsection we give a first indication
of the sort of computational behavior that we h ve found.

We initially tested the methods discussed in this section on several arti-
ficial problems. Here we report results on a simple 20 x 20 nonlinear block
bordered system of equations which has four 4 x 4 blocks, A 1, ... , A 4, and
a 4 x 4 bottom block P, and fq+1 linear. In all cases, the starting value of x
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was close to the solution, and no global strategy (e.g. line search) was used.
All these experiments were run on Pyramid P90 computer. The equations
are given in Zhang[19891.

First, we compare the performance of the three methods when only one
inner iteration (Ii,, = 1) is used in the uncorrected implicit and corrected
implicit methods (Table 2.1). The explicit method and the corrected implicit
method with Ii,, = 1 are identical in this case (see Theorem 2). Thus, the
same number of iterations are required to converge to the solutions. The
computing times are slightly different since the implementations of the two
methods are different. The uncorrected implicit method converges a little bit
slower than the other two methods, which is reasonable since the correction
step is needed to make it one-step quadratically convergent.

Table 2.1: Experiments with the Three Methods

(Ii, = 1) outer iterations (seconds)
explicit implicit corrected implicit

13 (0.44) 14 (0.40) 13 (0.4,)

Next we increased the number of inner iterations in the uncorrected and
corrected implicit methods. The experimental results (Tables 2.2 and 2.3)
show that the number of outer iterations is sharply decreased when the num-
ber of inner iterations is 2. However, the number of outer iterations decreases
more slowly as I,, increases further. There exists an optimal value of Ii,' for
computing time in both methods, but it is problem dependent. Our exper-
iments also show that the corrected implicit method converges a little bit
faster than the uncorrected implicit method when Ii, > 1, which is consis-
tent with our convergence analysis. In Section 5 we will see that for larger
problems, the improvements in time for the corrected implicit method with
Ii,, > 1 can be considerably larger than those seen here. Also, we will see
in Sections 4 and 5 that the decrease in outer iterations is advantageous for
parallel computation.
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Table 2.2: Experiments with the (Uncorrected) Implicit Method

(Ii, > 1) outer iterations (seconds)
I I,=2 jI = 3 I In=4 I.=

14 (0.40) 8 (0.34) 7 (0.40) 6 (0.44) 6 (0.54)

Table 2.3" Experiments with the Corrected Implicit Method

(Ii, > 1) outer iterations (seconds)
Iin= I In=2 1 i=3 I,.=4 j I=5

13 (0.40) 8 (0.38) 6 (0.36) 6 (0.50) 5 (0.54)

3 Globally Convergent Modifications of the
Explicit and Implicit Methods

The explicit method and corrected implicit method are locally quadratically
convergent to the solution of (1.1). In other words, when the initial solution
approximation is good enough, these methods are guaranteed to converge
rapidly to a root of (1.1). However, it is often hard to find a good initial
approximation for nonlinear systems of equations in practice. In addition,
many practical problems, such as the circuit equations, are highly nonlinear,
and if the current solution approximation is not close enough, a Newton step
may easily result in an increase in the function norm. For example, a small
change in some voltage difference in a nonlinear circuit equation may result
in a great change in an exponential term in a diode or transistor's function
evaluation. Also, many block bordered equations result in singular or nearly
singular Jacobians in the process of the iterations, for example because a
transistor with an exponential model is turned on at a nearly flat function
curve (see Zhang, Byrd, Schnabel [1989]).
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For these reasons, the explicit and implicit methods need to be modified
to handle unacceptable steps and singular Jacobian matrices in order to
converge to a solution from poor starting points. In this section we briefly
describe the modifications we have used, which are motivated in part by their
appropriateness for parallel, distributed computation. They are described in
more detail in Zhang [1989]. A global convergence analysis will be given in
a forthcoming paper.

We achieve convergence from poor starting points by using a line search.
The explicit method is just a standard Newton's method, so we can use a
standard line search. That is, we calculate the overall step direction dk 
(AXk ... A Ax) as described in Section 2.2, and then set

Xk+1 = Xk + Akdk

where the steplength parameter Ak > 0 is chosen by a line search procedure
that assures sufficient descent on 11 F(x) 112. Our line search is based upon
Algorithm A6.3.1 in Dennis and Schnabel [1983].

The implicit method is more complicated since we have both inner and
outer iterations. We need to choose the steps Axk = (xk ' +i - xi") in the
inner iterations so that the overall step direction

dk = AXI + b, ... , E 'AXkj+ 6,, (3.1)

where 6 is the correction step (2.22), is a descent direction on 11 F(x) 112. In
addition, we would like the calculation of the steps Ax "j for different values
of i to be independent, so that the calculations of the inner iterations can be
parallelized easily and efficiently.

Zhang [1989] shows that if each Axi" is calculated by
AxkJ = _k'jA.1f k', Xk (3.2)

-- j i i  ,q+0),

(i.e. the step discussed in Section 2.2 multiplied by a line search parameter
,k 'j > 0), the corrections steps 6b are calculated by (2.22), k is calculated
by (2.11) as before, and fq+1 is linear, then dk given by (3.1) satisfies
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J(Xk)dk 

i=o ,1 J 1 , , q+01-, . = E -X . kiq 9 9 . q + )fq+ (I,..q q+1)

From this, it is straightforward to show that a sufficient condition for dk given
by (3.1) to be a descent direction on II f(X) 112 is that for each i = 1,.. .,q,

£lnjl k +,(i ,zk+ 1 ) f(xi ,Z9+ 1 ) < 0. (3.3)

Note that (3.3) is always true for Ii, = 1 (since each A 'o > 0), and that it is
true for I,, = 2 if II f (xi',x+1 ) 11< 11 f(x' 0 , 1 ) 11 (which any line search
will enforce) and Ai' 1 < Aik . Since (3.3) can be monitored independently
for each i, the following strategy will guarantee that a descent direction is
generated. For each j, the procedure calculates each Ax' by (3.2) using
a standard line search as mentioned above, and then checks whether the
corresponding partial sum of (3.3) is satisfied. If it is not, it sets A = 0
for 1 = j,... , Ii,, - 1 and exits the inner iteration for xi. The outer line search
can be performed as in the explicit method.

Our approach for dealing with (nearly) singular Jacobians is based upon
the Levenberg-Marquardt approach as described in Dennis and Schnabel
[1983]. For a general system of nonlinear equations, if the current Jaco-
bian matix J is (nearly) singular, this approach modifies the search direction
to be _(JTj + iI)-ijTF, where F is the current function value, and A is
a small positive number. This direction is a descent direction on 11 F(x) 112
and is the solution to the trust region problem

minimized i F + Jd 112 subject to 11d 112 < Ad

for some A > 0. In the limit as p --+ 0, this direction equals -J+F, where
J+ is the pseudoinverse of J.

In the explicit and implicit methods described in Section 2, we need
to solve systems of linear equations using the matrices A1,..., A, and the
matrix J = P - ET=CiA71 Bi. If any of these matrices, say M, is nearly
singular (i.e., either the factorization detects numerical singularity or the
estimated condition number of M is greater than macheps- 1/2) we simply
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replace M-1 by (,TM +Aj)-i11T in the formulas as of Section 2, where A
is chosen by the strategy suggested by Dennis and Schnabel [1983] and is a
function of M. These perturbations again have interpretations in terms of
trust regions. Note also that the algorithms for deciding whether to perturb
each A,,. .., A., and for perturbing them if necessary, are totally independent
so that they can be performed in parallel.

Combining these perturbation techniques with the inner line searches in
a way that assures descent at the outer iteration and global convergence is
somewhat more complex, and will be addressed in Byrd, Feng, Schnabel,
and Zhang [1990]. In our implementations, we have simply taken Ii, inner
iterations for each block i, i = 1,... , q. We have used a standard line search
to choose each Ak'J (requiring sufficient descent on fi) but have not checked
a condition like (3.3) that assures global descent. To our knowledge, the
algorithm has still always produced a descent direction.

The algorithm we implement is summarized below. If i or any Ai below
is (nearly) singular, j-1 or A7 1 is replaced by (jTj + Ai)-lTj or (AT A +

AiI)-'AT for a small positive A or pi, respectively. When fq+l is linear, the
explicit method is just a special case with Ii,, = 1 and each At" = 1.

Implicit Method with Global Modification

1. For j = 0,... I, 1, calculate xi+l x - -'A7'f(I',+,) where
' > 0,i

2. Form and factor J -P E CiA71B.
3. alclat _1-fq+,(.t+1, .. ,k+IXk -k+lx'"

3. Calculate x+ 1 = ,... + ) where ti i,

4. Calculate the corrections 6  -A- ... A Xk1 and set -k+1 t k+1 +6,

1,... ,q.

5. Calculate Xk+1 = Xk- Akdk where dk = (k+l _-... , k+1 _xk, Ax +).

14



4 Parallel Explicit and Implicit Algorithms

4.1 Motivation - LU factorization of block bordered
linear equations

Note that the LU factorization of the block bordered Jacobian matrix

A, B1
A 2  B2

Aq Bq
C1 C2  Cq P

is (L, U, /
L2 U2  B2

Lq Uq Bq
6 i 62 Cq L9+i Uq+1

where for i q , ... ,

i = Ui
C,=

and

Lq+iUq+i = j = P - E .CA'B, - P- "CB,.
i=I i=1

(This is the same matrix J as in Section 2.) The calculations of Li, U, B,
and Cj for each i are independent, and thus can be computed very efficiently
in parallel. The factorization of J must follow these calculations and will not
parallelize as efficiently, especially on distributed memory multiprocessors,
because it will require considerable communication.
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A parallel version of the explicit method essentially consists of performing
the above factorization in parallel at each iteration. The parallel version of
the implicit method that we discuss next will be seen to perform closely
related operations. The major difference will be that, by performing more
than one inner iteration per outer iteration, it will spend a larger portion of
its time on the calculations that parallelize very efficiently, those for blocks
1, ..., q, and a smaller portion of its time on the calculations that parallelize
less well, the formation and factorization of j and the outer line search.
Thus the implicit method can be expected to parallelize more effectively
than the explicit method, especially on distributed memory computers. If
the two methods require similar amounts of time on sequential computers,
as indicated in Section 2, then the implicit method can be expected to be
faster on parallel computers.

4.2 Parallel Algorithms

Below we give a general description of a parallel corrected implicit method
that is based upon the sequential method presented in Sections 2 and 3.
The parallelism comes mainly from executing all the operations on blocks 1
through q, which have been designed to be independent, concurrently. The
parallel explicit method is just the special case with 1,, = 1 and no inner
line search.

Inner Iterations

1. For i = 1, q, Do in parallel:

1.1 Factor Ai and estimate its condition number Cond(Ai)

1.2 If Cond(Ai) < Tol then set Ali = Ai, N, = I
Else choose pi > 0, form and factor Ali = ATAi + ,I,I,
set Ni = AT

1.3 Forj - 0, Ii,-1, Do:
Solve M x4'j = -ANfi(x " ,xkq1 ) for Ax ' j

Inner line search: xi' = i + A" Axk" for some 'j > 0

1.4 Solve MWq = NiBi for W

1.5 Calculate T = Cill,
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Outer Iteration

*2. Formj = P -

*3. Factor i and estimate its condition number Cond(j)

*4. If Cond(J) < Tol then set M = J, N = I

Else choose A > 0, form and factor M = jTj + pl, setN = J

*5. Solve MAxq+= -Nfq+.(x. i  
. x"q, ) for A

6. For i = 1, q, Do in parallel:
Calculate corrections = 1and set tk+ = + k.n,,

*7. Outer line search: Xk+1 = Xk + Ak(-k+1 - Xk,..., tk+1 - Xk, Ax+)

for some Ak > 0. q q q

The steps marked with stars requires synchronization (on a shared mem-
ory multiprocessor) or communication (on a distributed memory multiproces-
sor). Step 2 requires synchronization if the matrices Ti are full. In the VLSI
problems, however, the nonzero columns of Bi, and hence T, are disjoint (see
Section 1.2) and hence step 2 can be performed efficiently in parallel.

On shared memory machines, steps 3-5 can be performed in parallel using
standard parallel methods for solving linear equations. On a distributed
memory machine, it will only be efficient to perform steps 3-5 in parallel if
the dimension of j is rather large. In our test problems, i was fairly small,
so we performed steps 3-5 on one processor, on which we kept P, J, and
xq+l. The remaining data was distributed in the obvious way: A,, Bi, Ci,
and z were stored together on the processor that handled block i. Step
7 includes two main operations, the calculation of trial points 2 k+. and the
evaluations of F at the points, that are performed in parallel on a shared
memory machine, and may be performed sequentially or in parallel on a
distributed memory machine depending on their costs relative to the cost of
communication.
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5 Experimental Results on a Hypercube Mul-
tiprocessor

5.1 The test problem: a nonlinear block bordered
circuit equation

The nonlinear block bordered application we considered for testing our meth-
ods is the VLSI circuit simulation problem. Standard circuit simulation
methods consist of stiffly stable implicit integration formulae to discretize
the differential equations, Newton's method to solve the resulting nonlinear
algebraic equations,

F(X) = 0, (5.1)
and sparse LU decomposition to solve the linear equations that arise at each
iteration of Newton's method,

JAX = -F(X), (5.2)

where J E R ×" is the Jacobian matrix of (5.1). Typically. less than 2
percent of the entries of J are nonzero for n > 500 (see e.g. Sangiovanni-
Vincentelli and Webber [1986]). The Newton iteration for (5.1) is repeated
until a root is found or the upper bound on the number of iterations is
reached. The program then decides whether to accept the solution, based on
its estimate of local truncation error and the number of iterations required.

As mentioned in Section 1.2, partitioning the circuit leads to a block bor-
dered system of nonlinear equations of the form (1.1) (see e.g. Rabbat et
al [1979]). Given a circuit network F, a group of partitioned subnetworks
-1i, i = 1, ..., q, and the connecting current and voltage equations, the
block bordered nonlinear system of equations is defined as follows. Currents
between two subnetworks and voltages at the boundary are each represented
by two variables, one in each subnetwork, which are set equal to each other
by the equations of fq+1. Variables xi (i = 1, ..., q) are used to rep-
resent internal voltage and current variables in each of the q independent
subnetworks. They also include the current connecting variables among the
q subnetworks. The variable xq+l is used to represent the voltage connect-
ing variables among the q subnetworks. Equations fi represent the current
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equations for subnetwork -y and its connecting variables. These equations
for voltages and currents are standard current equations involving resistors,
transistors, diodes, voltage sources and other elements. Since the connecting
equation fq+l is linear, the coefficient matrices C,, i = 1, ..., q for the
current connecting functions are constant, and the coefficient matrix P for
the voltage connecting function is also constant.

For a very large circuit, the network F may be divided into subnetworks
recursively, which leads to a multi-level block bordered system of nonlinear
equations. In such a case, the diagonal blocks A,, (i = 1, ..., q) are
themselves block bordered matrices. The border elements of the multilevel
system represent the connections of the highest level.

We first applied our algorithm to the circuit shown in the figure in Ap-
pendix A. It is the 741 op-amp circuit (see e.g. Sedra and Smith [1982]),
which was introduced in 1966 and is currently produced by almost every
analog semiconductor manufacturer. The circuit is partitioned into 4 parts
with a roughly equal number of nodes in each sub-circuit. A transistor is
viewed as a nonlinear three terminal device in the circuit. Thus, apply-
ing the Ebers-Moll transistor model (see Ebers and Moll [1954]), 24, 27,
23 and 27 KCL functions are defined in the 1st, 2nd, 3rd and 4th block
respectively. The 7 connections among the 4 blocks result in 14 linear cur-
rent and voltage connecting functions. The total number of variables is
24 + 27 + 23 + 27 + 14 = 115. The structure of the block bordered
Jacobian matrix and the linear connecting border is shown in Appendix B.

We also applied our algorithm to a large analog filter, shown in Appendix
C, that is composed of three 741 op-amp circuits (see e.g. Smith [1971],
Valkenburg [1982]). This circuit leads to a 2-level block-bordered nonlinear
system, as follows. The analog filter is first partitioned into 3 parts, each
of which contains one 741 op-amp circuit. The first level block bordered
structure is thus formed with 3 diagonal blocks and 1 connecting block. Each
of the diagonal blocks is a 741 op-amp circuit which is partitioned into the
second level block bordered structure.
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5.2 The 741 op-amp Circuit Simulation on the Intel
Hypercube

The nonlinear block bordered equations of the 741 op-amp circuit were solved
in parallel on an Intel iPSC1 hypercube using the algorithm of Section 4.2.
The 4 blocks of the circuit were distributed among 4 nodes of the hypercube.
For convenience, the steps involving the connection function fq+l (steps 3-5
of the parallel algorithm) were performed on a different node which plays
the control role. They could just as well have been done on one of the
4 nodes. Identical initial values were used as the inputs for all the above
experiments, and the convergence tolerances were also the same for those
experiments. The solutions of the experiments were verified by comparing
them to the solutions computed by the program SPICE which is a general-
purpose circuit simulation program for nonlinear dc, nonlinear transient, and
linear ac analysis (see Newton, Pederson and Sangiovanni-Vincentelli [1988]).

Tables 5.1 and 5.2 show the experimental results for the explicit method.
Tables 5.3 and 5.4 list the experimental results for the corrected implicit
method with one or more than one inner iterations per outer iteration and
with inner line searches. Note that as long as the inner line search is ap-
plied, the corrected implicit method, even with one inner iteration per outer
iteration, is not the same as the explicit method.

In Tables 5.1 and 5.3, T (i = 1, ..., 4) is the total computing time
for all computations involving the ith diagonal block on node i, Tb is the
total computing time for all computations involving the bottom block on the
control node, T, is the total communication time for the computation, iNV', is
the total number of outer iterations required to converge to the solution, and
Ii, in Table 5.3 is the number of inner iterations used in the corrected implicit

Table 5.1: Times for the Explicit Method on the op-amp 741 Circuit

T1 T2  T3  T4 Tb T N.,
12.81 14.20 13.45 14.58 3.42 0.43 20
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Table 5.2: Parallel Performance of the Explicit Method on the op-amp 741
Circuit

T. I Tp I sp eff f
58.46 18.43 3.14 78.5%

Table 5.3: Times for the Corrected Implicit Method on the op-amp 741
Circuit

Im TI T2  T3  T4  Tb T Nout

1 11.81 13.06 11.96 13.28 2.84 0.38 18
2 12.60 14.01 12.83 14.45 1.65 0.32 15
3 11.28 12.84 11.46 13.01 1.38 0.25 12
4 18.48 20.57 18.81 21.34 1.32 0.25 11
5 29.04 32.12 29.92 32.89 1.34 0.24 11

Table 5.4: Parallel Performance of the Corrected Implicit Method on the
op-amp 741 Circuit

ll T. T, sp eff
1 52.95 16.5 3.21 80.25%
2 55.54 16.42 3.38 84.50%
3 49.97 14.64 3.43 85.75%
4 80.52 22.91 3.50 87.50%
5 125.31 34.47 3.60 90.0c
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method. In the performance Tables 5.2 and 5.4, T, is the total computing
time for solving the same problem sequentially on one node,

4

T= TT+Tb,

Tp is the parallel computing time,

TP = max(T, ... ,T 4) + Tb + Tc,

sp is the speedup of the parallel computation in comparison to its sequential
counterpart,

T.
sp = TP'

and eff is the parallel efficiency defined by

eff = sp
number of processors'

Our experiments show that using the implicit method, with inner line
search and multiple inner iterations per outer iteration, does indeed speed
up the convergence to the solution. For example, the implicit method with
one inner iteration per outer iteration and inner line search used 18 iterations
to converge to the solution. The same algorithm without inner line search, i.e.
the explicit method, used 20 iterations. As the number of inner iterations per
outer iteration, I,, was increased, the total number of outer iterations Nt
decreased from 18 to 11, and the speedup increased because the bottom block
computations constituted a smaller percentage of the overall computation.
However, the sequential computing time only decreased by a small amount
until Ii, = 3, and then increased dramatically because the cost of the extra
inner iterations swamped the small savings from the further decrease in the
number of outer iterations. Both the sequential and parallel computing times
were minimized when the number of inner iterations was I;, = 3, and the
speedup in this case, 3.43, was good. The parallel method for this case costs
21% less than the parallel explicit method.

Our experiments also show that the bottle-neck computing time Tb of
the corrected implicit method is more than 50% lower than in the explicit
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method if more than one inner iteration is applied. The communication time
is also lower since the total number of iterations, and hence the time to send
the updated variables among the nodes, is less than for the explicit method.
Consequently, the advantage of the implicit method over the explicit method
should be greater in larger problems where the amount of communication
and cost of solving the bottom block are larger.

5.3 Experiments for 2-level Block Bordered Circuit
Equations

The 2-level nonlinear block bordered equations for the analog filter composed
of 3 blocks of the 741 op-amp circuit were also solved in parallel on the Intel
iPSC1 hypercube multiprocessor. The linearization of these equations at
each iteration has the form

JAX = -F (5.3)

where J is the 2-level block bordered matrix shown in Appendix D,

AX = (x,, .. , Ax, Ax'+, AX 2x 2  l, , ... ,
AX 3 1 i+)T

q+1, q+1

and

F = (f l, ... , ./1, f l ,.. ,f l x, .. , + , + )T .

F = ' fq'l fq'+i, fA, fq ? fq2 +i, A~ 'f
3 f +i I fq~iT

The system (5.3) could be solved by applying the block bordered solver
to each of the 3 block bordered submatrices, and then solving the whole
system by applying the block bordered solver again. Alternatively, the block
bordered Jacobian matrix may be reordered to
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Al BI

A B 2

q

Al Bi

f33

C1  C1  F'P
C2  C2  P

1
C3 C3  P3

0 2 C3 q

and AX reordered to

AX = (AXI, ... , A X , NX 2, , Ax31 q 1 1q

Ax'+j, AX!.. A:11+1, Aiq+l )T

and F reordered to 1" 2 3it 3, fl f,? '2+L, 3 T
F f ., ..., ,f. fi, fq, f + f , fq+I)

For solving this block bordered system, 2 levels of parallelism can be ex-
ploited. Let m be the number of amplifiers in the analog filter and q the
number of sub-circuits inside each amplifier; here m = 3, q = 4. First the
m x q independent operations for solving the diagonal blocks can be per-
formed in parallel. Secondly, the m independent operations for transforming
the matrices PJ, j = 1, ..., m, and solving the resultant systems of equa-
tions can be performed in parallel. Finally, the very bottom block, with the
matrix P, must be transformed and solved. This is the approach that we
took.
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Table 5.5: Times for the Explicit Method on the Analog Filter

T T2 T 3  T 4  T 5  T6 T7 TS T9

13.49 14.93 14.21 15.34 13.44 14.85 14.16 15.46 13.36

TIo T11  T1 2  T 1  T2 T 3  Tb T jNot
14.76 14.25 15.63 3.01 3.12 3.17 0.58 1.31 21

Table 5.6: Parallel Performance of the Explicit Method on the Analog Filter

T, TP sp eff f
183.76 20.69 8.88 74.00%

In our test program, the 12 diagonal block equations of the analog filter
were distributed among 12 nodes of the Intel hypercube. The first level or
internal connection functions in each amplifier, fj+1 (j = 1, ..., 3) were
distributed to 3 of the 12 nodes, and the second level connection function
among the 3 amplifiers in the analog filter, fq+i, was handled sequentially by
one of the 12 nodes.

Tables 5.5 and 5.6 give the experimental results and the performance of
the explicit method for solving the 2-level analog filter equation. Tables 5.7-
5.11 show the experimental results and performance of the corrected implicit
method for solving the 2-level block bordered analog filter equations with one
to four inner iterations. The symbols in the tables have the same meanings
as in Tables 5.1-5.4, with the following exception: T, i = 1, ..., 12 is the
total time for the 12 first level blocks, while T, j = 1,2,3 is the time for
the 3 second level blocks.

Our experimental results show that the corrected implicit method is also
more efficient than the explicit method on this larger block bordered sys-
tem of equations. The total number of iterations N,,t is 21 for the explicit
method, while for the implicit method it decreases from .18 to 11 as the num-
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Table 5.7: Corrected Implicit Method Times for the Analog Filter, I,, = 1

T T2 IT 3 IT 4  TS IT6 IT 7  T8  T9

11.54 12.78 12.13 13.13 11.52 12.69 12.10 13.21 11.42

T10  T11  T12  T' T2 T3r Tb T N,
12.61 12.20 13.40 2.56 2.67 2.731 0.5 1.12 18

Table 5.8: Corrected Implicit Method Times for the Analog Filter, I, = 2

T1  T2 IT 3  T4 jT 5 [ T6 T T8 T9

11.83 11.93 111.84 12.09 11.91 12.01 11.89 12.12 11.84
To TI [ T12  T 1  T2  T3 Tb T. Not

12.05i 11.94 12.13 1.65 1.65 1.64 0.36 0.73 12

Table 5.9: Corrected Implicit Method Times for the Analog Filter, I, = 3

TI T2 I-/T3 IT4 T5 T6 IT7 T8s T9
H2125 23.67 23.25 24.51 121.67 23.29 124.21 124.35 21.22

T 0  Ti1  T 2 [ T' f T' T3  Tb I T Nout
23.56 23.21 24.75 1 1.52 [ 1.51 1.53 1 0.34 1 0.69 11

Table 5.10: Corrected Implicit Method Times for the Analog Filter, I, = 4

TI T2  T3  T4  T5  T6 T7  T8  T9
29.03 32.24 29.98 32.75 29.11 32.04 29.87 32.71 29.40

T1o T11  TI T 1 [T2[TI [ Tb T. No.t
32.21 31.05 132.34 1.50 1.51 1.50 0.35 0.69 11
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Table 5.11: Parallel Performance of the Corrected Implicit Method on the
Analog Filter

h. _ T TP sp eff
1 157.19 17.19 8.86 73.83%
2 148.68 14.86 10.01 83.40%
3 283.84 27.31 10.39 86.58%
4 373.08 34.89 10.69 89.08%

ber of inner iterations Ii, is increased from 1 to 4. However the sequential
computing time Tb for the implicit method only decreases from 157.19 for
Iin = 1 to 148.68 for Ii,, = 2 (for the explicit method it is 183.76), then it
increases sharply due to the cost of the additional inner iterations. Thus the
high speedups for the implicit method for Ii, = 3 and 4 in comparison to the
same sequential method are not significant since the large number of inner
iterations makes the algorithm inefficient, and the sequential time is subop-
timal. For the optimal number of inner iterations, Ii, = 2, the speedup is
10.01 for 12 processors and the efficiency is 83.40%. The parallel computa-
tion time improvement over the parallel explicit method is 28%, as compared
to 19% in the sequential case. We feel that this experiment indicates that ap-
plying the implicit method to solve large block bordered circuit equations on
a distributed memory multiprocessor can result in a highly efficient method.

6 Summary and Future Research

We have introduced a corrected implicit method for solving block bordered
systems of nonlinear equations. It allows multiple "inner" iterations, itera-
tions on the variables and equations of the q diagonal blocks, to be performed
per each "outer" iteration, which involves all the variables and equations
including the connecting, bottom block. If only one inner iteration is per-
formed per outer iteration, no line search is used, and the bottom, connecting
equations are linear, then the corrected implicit method is identical to the
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explicit method (Newton's method). When more than one inner iteration is
performed per outer iteration, however, the methods are different, and in our
experiments the corrected implicit method solves problems in somewhat less
time than the explicit method on sequential computers. On parallel comput-
ers, the corrected implicit method has a larger advantage over the explicit
method because it parallelizes more effectively, since the inner iterations con-
stitute a larger percentage of the total computation and parallelize far more
effectively than the outer iterations. On one and two level block bordered
problems from VLSI circuit design that we tested, the parallel efficiency of
the fastest (sequential and parallel) corrected implicit method on an Intel
iPSC1 hypercube was about 85%.

The methods presented in this paper all assume that the Jacobian ma-
trix is available at each iteration, either analytically or by finite differences,
and that it isn't too expensive to evaluate. In some applications, however,
the nonlinear equations are given by an expensive computational procedure,
and analytic or finite difference Jacobians are very expensive to obtain. In
such cases for general systems of nonlinear equations, secant approximations
to the Jacobian are used that are based entirely on function values at the
iterates (see e.g. Dennis and Schnabel [1983]). The development of related
secant approximations to the Jacobian for block bordered nonlinear equa-
tions seems to be an attractive research topic, since it appears possible to
construct approximations that retain the block bordered sparsity pattern of
the Jacobian and also allow the factorization of the Jacobian approximation
to be updated efficiently.
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APPENDIX A

THE PARTITIONED 741 OP-AMP CIRCUIT

The 741 op-amp circuit was introduced in 1966 and is currently pro-

duced by almost every analog semiconductor manufacturer. The circuit is

partitioned into 4 parts with roughly equal elements in each sub-circuit.

*' -'' : ', t '
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APPENDIX B

THE BLOCK BORDERED JACOBIAN MATRIX
OF THE PARTITIONED 741 OP-AMP CIRCUIT
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APPENDIX C

AN ANALOG FILTER
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